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• Lightning strike related 
damage 

− Peak amplitude ~200 kA 
− Duration ~500ms 

 
 
 
 

• Protection against laser (DE 
weapons) 

− 290 W/cm2 shot chars 
paint and melts Al in 0.5 
sec 

Ref: MtL-STD-1757A 

Ref: Fielding, et al, SAMPE, 2005 

Why Conductive Composites? 
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Overall Objective 

• Hierarchical carbon fiber morphology for tailored 

thermal properties in heterogeneous materials 

systems 

– Fiber reinforced composites 

– Sensors, Heat sink, etc. 

Functionalization 

Carbon Fiber 

CNT 

Polymer Matrix 

Carbon Fiber Carbon Fiber 

CNT 

Achieving the appropriate thermal interface morphology is essential 
Interfaces: CNT-CNT; CNT-polymer; CNT-carbon fiber 
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Technical Progress 

This year… 

• Wave Packets – single mode phonon transmission in functionalized 

CNT - J. Chem Physics, 135, 104109 (2011) 

• Kapitza resistance – Boltzmann-Peierls-Callaway equation – a 

mesoscale computational tool - Physical Review E, 83, (2011)  

• Thermal rectfication in asymmetric 3D nanostructure - Nano Letters, 

2012 

• Thermal conductivity reduction through helical nanowire superlattice 

structure (thermoelectrics) - Nanoscale, 2012, 4, 5009 

• Thermal interface: a review - ACS Applied Mater. Interfaces, 4 (2), 2012 

• Metal – CNT interface 

– MD simulation, processing, measurements 
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MWCNT Graphite Interface 
(Hexagonal Crystal ED Patterns) 

Nanotubes 

Substrate 

Interface 

\.J ••• • 

___ R.!;i 
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Interface Thermal Resistance across CNTs:  
Transverse Connection with Polymer Molecules 

… 

Temperature evolution 

Steady state temperatures vs. CH2 linkages 

Effect of linkage length as well as their no. 
on overall interface conductance 

Varshney, J. Phys. Chem. C 2010, 114 
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All metallizations 
employed high energy 

deposition 

HOPG

C 1s

O 1s

XPS of air-cleaved HOPG 

Effects of Ambient Environment During 
Cleaving on Interfacial Chemistry 

Vacuum cleaving apparatus 

HOPG 
sample 

Adhesive 
on linear 
feedthru 

Metal 
sources 
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b)150 oC c)300 oC a)25 oC 

d)25 oC e)150 oC f)300 oC 

h)150 oC i)300 oC 

Dp = 11 nm Dp = 25 nm 

Dp = 8 nm Dp =13 nm 

Dp < 5 nm Dp < 5 nm 

g)25 oC Ti 

Dp < 5 nm 

Dp = 19 nm 

Ni 

Dp =11 nm 

Au Increasing 
cohesive 

energy  of 
metal 

Increasing 
particle 

size 

Intrinsic Factors Affecting Particle 
Morphology 
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Simulation Approach: models of 
soft and hard carbon structures in metal matrix 

Metals 

CNTs 

Fullerenes 

M
ET

A
L 

 D
EB

YE
  F

R
EQ

U
EN

C
Y 

Al 

Cu 

In 

Au 
•No (or narrow) overlap in fullerene / metal vibrational spectra 
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Conductance for Different Carbon-Metal 
Interfaces in NEMD Simulations 

• Values are low (metal-metal 300-1000 

MW/m2/K) 

• Similar conductance found for 

MWCNT and SWCNT interfaces 

• Conductance is higher for lighter 

metal 

• CNT interfaces show similar 

conductance in active heating and 

temperature relaxation modes 

• Lowest conductance is for C60/Gold 

interface in temperature relaxation 

mode (~3.5 MW/m2/K 

• C60/polymer without coating ~12..15 

MW/m2/K) 
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Energy of vibrational modes in NEMD – 
MWCNT in Cu  

 

)0()()( vtvtC



• The peeks of F(w)  correspond to VDOS 

obtained from the vibrational analysis 

• There is a sharp transition near Debye 

frequency of copper (~8.5 THz): 

vibrational modes at lower frequencies 

are “cold” 

• Interfacial conductance is proportional to 

the “overlap” between VDOS of metal and 

CNT – diffuse mismatch model works 

dtetCF ti
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Mode-Locked 
Ti:Sapphire (140 fs) 775-830 nm

80 MHz

Electro –Optic Modulator 
@ 9.8MHz

Variable Delay

Sample Photodiode

RF Lock – in Amp.

Translation Stage

Lens

Iris

Ref.
CCD 
Camera

OPO
505-1600 nm

SpectrometerPulse
Compressor

Lens Lens

l Filter

Signal

Interface Conductance Measurements with Time 
Domain Thermal Reflectance (TDTR) 

(No way for nanotube-
based materials!) 

Courtesy of John 
Hart /Nanobliss 

Pump Advance (ps)
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-V
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o
u
t

1

2

3

4

Au-HOPG "121911a"

kHOPG = 5.9 W m
-1

 K
-1

 

GAu-HOPG = 39 MW m
-2

 K
-1

TDTR schematic 

Cooling curve 
with picosecond 
time resolution 

Undoubtedly the best 
technique for measurement 
of interface conductance, but 
requires Ra <25 nm! 
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MD conductance for graphite-metal 
interface: well explained by DMM 

• Conductance scales with Debye temperature of 

the metal (diffuse mismatch model works well) 

• The constant is good approximation for spectral 

interfacial conductance for all studied metal-

carbon interfaces 
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Interface Conductance for HOPG and 
Different Metals 

Observations: 
 
-Strong dependence on 
metal for qD metal <400K 
(~3x) 
 

-Conductance levels off 
above ~0.5 (qD metal ~400 K) 
 
-Conductance for vacuum 
cleaved HOPG less than air 
cleaved (within error bars, 
but repeatable) 
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50 nm 

Au on air-
cleaved HOPG 

Au film deposited 
on vacuum 
cleaved HOPG 

≈15% reduction in G for 
vacuum cleaved HOPG 

>15% reduction in 
interfacial contact area 

Effects of Vacuum Cleaving on Metal Morphology 

island corner barrier 

step barrier 

Lagally, et al. Nature, 417 (2002) 902 

Higher metal diffusivity on clean HOPG than on 
metal aggregates due to ES barriers 

50 nm 

Same phenomena drives growth of 
ice dendrites on clean glass 

Ta 
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Dg= 4 nm Dg= 12 nm 
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increasing CNT defect density 

increasing Au nanoparticle size 
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Controlling Particle Size by Introducing Defects 
in-situ 

Consider nucleation kinetics
where,

Higher defect densities 
(increasing X) decrease critical 

cluster size

3

3

2












m

X
i

Differentiate G to find critical size (at maximum)

Kern, Curr. Top. Mat. Sci. 3 (1979) 139

g* = interface energy
gB substrate surface energy
Ck constant describing surface area island face
CAB constant describing surface area film/substate

Decreasing X by introducing defects  
decreases critical cluster size 
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targeting multifunctionality in carbon fibers 

CNT yarn demonstrates comparable properties to state of the art carbon fibers, 
however, is still far away from single nanotube values 

Tensile strength Thermal conductivity Electrical conductivity

Carbon fiber (IM8) 6.1 Gpa 500 W m-1 K-1 at 22 oC 1 x 103 S cm-1 at 22 oC

CNT yarn SOTA 3.5 GPa 60 W m-1 K-1 at 22 oC 2 x 104 S cm-1 at 22 oC 

Proposed target 10 GPa 500 W m-1 K-1 at 22 oC 4 x 104 S cm-1 at 22 oC

Individual SWCNT 100GPa 3000 W m-1 K-1 at 22 oC 7 x 104 S cm-1 at 22 oC

Copper s—6 x 105 S cm-1 
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Morphology A                           
(large islands/full coverage) 

Morphology B                                            
(large islands/sparse coverage) 

Morphology C 
(small islands/sparse coverage) 

Investigating Effects of Morphology on CNT 
Yarn Properties 

vertically aligned 
array

metallized
VACNT

metallized
CNT yarn

winding 
onto 

bobbin

twisting 
into yarn

5 mm 10 mm
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 Dry Spinning of CNT Arrays into Carbon 
Nanotube Fibers 

Vertically aligned CNT 
array 

300-600 mm tall CNTs 

Take-up bobbin 
rotation 

Rotation 
imparting 

twist 
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Correlation between particle size and 
melting point in literature 

•The relationship between the melting point 

of bulk material and a particle is given by, 

where, Tb =  melting point of particle, Tm = melting point of particle, r = 
radius of particle, ΔH = molar latent heat of fusion, γ and ρ = surface energy 
and density. 

*Buffat P, Borel JP (1976) Size effect on the melting temperature of 
gold particles. Physical Review A 13 (6):2287-2298 
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Particles with Tailorable Melting Points 

252.93°C
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Sample: 051311 pan 49 Cu-NT
Size:  2.1000 mg
Method: rt-500 C

DSC
File: F:...\051311 pan 49 Cu-NT.001
Operator: Houtz
Run Date: 13-May-2011 22:39
Instrument: DSC Q2000 V24.8 Build 120

Exo Up Universal V4.7A TA Instruments

DSC data suggests melting of 3 nm  
Au islands at 250 °C 

.002 W/g 
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High Resolution TEM Micrographs of 
NT Yarn Cross-section 

\.J ••• • 

R.!;i 
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Electrical Properties of CNT Yarn by 
4 Wire Probe 
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Microscale Thermo-Mechanical 
Measurements 

\.J ••• • 
Thermal Measurements of Nanotubes and Nanowires 

Themal conductance: G = Q / (Th· T, ) 

Kim et al, PRL 87, 215502 

Shi et al, JHT, in press 

ln-5itu Thermal' Conductivity Experiment 
using AFR!/MCF Device 

Suspended m icroheal er.s 

w irtlil •eill11 bedded liUiils 

-
I M iuos~ 1111 ples. 
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Temperature Calibration of the System & K 
Measurement of Standard Metal Wires \.J ••• • 
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Thermal Conductivity Measurement 
Testing Protocol 

• k for each sample measured 3 times 

– First at RT 

– Annealed at 300 oC & cooled to 
RT 

– Repeat measurement at RT 

• Omega® thermal grease used at 
the interface 

• All measurements performed in a 
vacuum chamber 

• Length and cross sectional area 
measured by EM 
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Measured Thermal Conductivity \.J ••• • 
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Metallization and annealing result in 
30% increase in thermal 

conductivity without compromising 
mechanical strength  

Micro-scale thermal conductivity and 
mechanical property measurements 
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Materials Selection:  Intrinsic vs. 
Extrinsic Effects on Conductance 

CasaXP S (Thi s st ring can be edit ed in CasaXPS.DEF/P rintFootNote.txt)

Ti 2p HT2asp/44

TiC 2p3/2TiC 2p1/2 TiO 2p3/ 2TiO 2p1/ 2

TiO2 2p3/ 2

TiO2 2p1/ 2

Name
TiC 2p3/2
TiC 2p1/2
TiO 2p3/2
TiO 2p1/2
TiO2 2p3/2
TiO2 2p1/2

Pos.
454.4363
460.5363
455.2173
461.3173
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463.5132

At%
10.76
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Gold has lowest intrinsic conductance, 
however highest oxidation resistance 

CasaXP S (Thi s s tring can be edit ed in CasaXPS.DEF/P rintFootNote.txt)
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metal 
vapor  
source 

spinnable 
CNT array 

Ribbon pulling during metallization 

metallizing while spinning 

Overcoming Difficulties with non-gold 
Metallization within Vacuo Spinning 

in situ spinning and 
annealing during 

UHV metallzation to 
avoid oxidation at 
critical interfaces 

affecting transport 
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Direct Concurrent Thermal and Mechanical Property 
Measurement of Single Carbon Fiber 

\.J ••• • 
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Load Displacement Measurement of Single 
Carbon Fiber Diameter ~ 12 µm 

\.J ••• • 

Compress on Terstol" Hold 

Elapsed Time (s) 

11287.6 
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0.1 
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Displacement for Next Picture (micron) 

38 
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40 

Acquiring image 

2000.000 6000.000 8000.000 10000.000 12000.( 

Acquisition 
Image Progress 
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Transverse Thermal Conductivity of 
Pitch Carbon Fibers 
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Summary 

• Metal-CNT interface thermal conductance – two 

dominant phenomena 

− Electronic heating 

− Lattice vibration (phonon contribution) 

 

• Debye temp matching is extremely important for 

tailoring interface conductance 

 

• Submicron scale combined thermo-mechanical 

property measurement capability 
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